If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 35x2 + 32x + 16 = 0 Reorder the terms: 16 + 32x + 35x2 = 0 Solving 16 + 32x + 35x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 35 the coefficient of the squared term: Divide each side by '35'. 0.4571428571 + 0.9142857143x + x2 = 0 Move the constant term to the right: Add '-0.4571428571' to each side of the equation. 0.4571428571 + 0.9142857143x + -0.4571428571 + x2 = 0 + -0.4571428571 Reorder the terms: 0.4571428571 + -0.4571428571 + 0.9142857143x + x2 = 0 + -0.4571428571 Combine like terms: 0.4571428571 + -0.4571428571 = 0.0000000000 0.0000000000 + 0.9142857143x + x2 = 0 + -0.4571428571 0.9142857143x + x2 = 0 + -0.4571428571 Combine like terms: 0 + -0.4571428571 = -0.4571428571 0.9142857143x + x2 = -0.4571428571 The x term is 0.9142857143x. Take half its coefficient (0.4571428572). Square it (0.2089795919) and add it to both sides. Add '0.2089795919' to each side of the equation. 0.9142857143x + 0.2089795919 + x2 = -0.4571428571 + 0.2089795919 Reorder the terms: 0.2089795919 + 0.9142857143x + x2 = -0.4571428571 + 0.2089795919 Combine like terms: -0.4571428571 + 0.2089795919 = -0.2481632652 0.2089795919 + 0.9142857143x + x2 = -0.2481632652 Factor a perfect square on the left side: (x + 0.4571428572)(x + 0.4571428572) = -0.2481632652 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 16x^2+x+1=0 | | 3x^2+24x=0 | | x+8=5x-12 | | -2=4(s+7)-3s | | -9.1=54.6 | | 9t=-42 | | 18+x=-12+6x | | 2y=-18 | | -3(2b+1)+(7b-4)=0 | | 6x+11=4x+10 | | -0.17(x-18)+0.5(x+2)=x-20 | | 1.6q-4.1-3.9q=-3.3q-5.8 | | 13x+8-4=12x-4 | | -6-5x=12-x | | 4x^3-3x^2+2=0 | | x^5+5x^4=0 | | x^5+5x^4-4x^3+3x^2-2=0 | | 7y+2=-8y+6 | | -(7y+5)-(-6y-7)=1 | | 10+x=-7 | | 7-4x=x+12 | | 4x-5=2x+11 | | 2a^2=11a-12 | | -9-3(2x-1)=-18 | | 8(2x-3)=2(8x+4) | | 17-3x=2+2x | | 6+9s-4=5s+56-2s | | -6x+10=52 | | 9x^2-2x+4=10x | | 2-8x=10x+20 | | 5x+16x=147 | | -7.8x=62.4 |